wwrite notes in Jade using // or brainfuck with # #$\sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6}$ #$\alpha\Omega\omega$ $\epsilon ,\varepsilon, \phi, \varphi , \ell$ #$ x_i^2 10^{10}$ #$\{ and \}$ #$\frac{a+1}{b+1}$ #$(2+3)[4+4]$ #$\left(\frac{\sqrt x}{y^3}\right)$ #$\vert x\vert$ $\Vert x\Vert$ #$\langle and \rangle $ #$\lceil and \rceil$ $\lfloor and \rfloor$ #$\left( x \middle({\frac{billieboo}{boo}} \middle)y \right) $ #$ \left.\frac12\right\rbrace$ #$\Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr)$ #$ \sum and \int$ $\sum_1^n$ #$ \prod, \int, \bigcup, \bigcap, \iint, \iiint, \idotsint$ #$\Bbb Z$ #$\mathbf B , \mathit I , \pmb S , \mathtt T , \mathrm R , \mathcal C , \mathscr F \mathfrak G$ #$\sqrt{x^3}$ #$ {...}^{1/2}$ #$ \lim, \sin \lim_{x\to 0}$ #$\operatorname{foo}(x)$ #$\lt, \gt ,\le, \leq ,\leqq ,\leqslant ,\ge ,\geq, \geqq ,\geqslant, \neq $ . You can use \not to put a slash through almost anything: \not\lt ≮ but it often looks bad. #$\times \div \pm \mp $ #$x\cdot y$ #$\cup \cap \setminus \subset \subseteq \subsetneq \supset \in \notin \emptyset \varnothing$ #$\binom{n+1}{2k}$ #$\to , \rightarrow , \leftarrow , \Rightarrow , \Leftarrow , \mapsto $ #$\land , \lor , \lnot , \forall , \exists, \top , \bot , \vdash , \vDash $ #$ \star \ast \oplus \circ \bullet $ #$\approx , \sim , \simeq , \cong , \equiv , \prec , \lhd , \therefore $ #$\infty \aleph_0 $ #$\nabla \partial$ #$\Im \Re $ #$ a\equiv b\pmod n$ #$a,b,c,d,\ldots, z 1+2+3+ \cdots +n$ #$\hat x, \widehat {xy}$ #$\bar x , \overline {xyz} , \vec x , \overrightarrow {xy} , \overleftrightarrow {xy} $ #$\dot x \ and \ \ddot x$ #space is using \ , newline using \\ #$ \$ $ #$\backslash$ #$\_$ #$_5C_3$ # $$ \begin{matrix} 1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2 \\ \end{matrix}$$ #$$\begin{pmatrix} 1 & x \\ 1 & y\\ \end{pmatrix}$$ permutation #$$\begin{bmatrix} 1 & x \\ 1 & y\\ \end{bmatrix}$$ box #$$\begin{vmatrix} 1 & x \\ 1 & y\\ \end{vmatrix}$$ vector, for dbl use Vmatrix #$ \cdots , \ddots , \vdots$ #$$ \left[ \begin{array}{cc|c} 1&2&3\\ 4&5&6 \end{array} \right] $$ #$$ \begin{pmatrix} a & b\\ c & d\\ \hline 1 & 0\\ 0 & 1 \end{pmatrix} $$ # $\bigl( \begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \bigr)$ #$$ f(n) = \begin{cases} n/2, & \text{if $n$ is even} \\ 3n+1, & \text{if $n$ is odd} \end{cases} $$ #$$\left. \begin{array}{l} \text{if $n$ is even:}&n/2\\ \text{if $n$ is odd:}&3n+1 \end{array}\ \right\} =f(n)$$ #$$ \begin{array}{c|lcr} n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.24 & 1 & 125 \\ 2 & -1 & 189 & -8 \\ 3 & -20 & 2000 & 1+10i \end{array} $$ #$\cancel{x} , \cancelto{0}{x}$ #$\fbox A$ #$\underbrace{a\cdot a\cdots a}_{b\text{ times}}$ #$X\overset{a}{\underset{b}{\to}}Y$ #$\overset{ \huge\frown}{PQ}$ #$ \ \begin{CD} A @>{\text{very long label}}>> B\\ @V b V V = @VV c V\\ C @>>d> D \end{CD} $ #$a1+ \cfrac{12345}{ a2 + \cfrac{1234444444}{122222222}}$ #$ a+y^3 \stackrel{\eqref{1}}= x^2 \tag{0} $ #$a := x^2-y^3 \tag{1}$